

Implementing Point of Care Identity Management (PCIM) as a Data Consumer

PCIM requires each message sent between devices and the EMR to include patient device association data.
There are three parties to the PCIM protocol:

Medical devices can be both consumers and reporters. EMR systems can be reporters, managers, and/or
consumers. Other consumers include alarm management systems and medical device or procedure
information management systems. Other reporters include RTLS systems.

The following summarizes what the InnoVision Medical Patient Association Library has to offer the PCIM
consumer medical device software developer.

Getting Started with the Patient Association Library

A PCIM manager is an actor that maintains and distributes an up-to-date store of device-patient
associations. The API supports both a snapshot and a real-time association mode. The snapshot mode is as
simple as sending a query for associations to a PCIM manager as needed by your implementation. The real-
time mode creates a subscription to the PCIM manager and receives the latest associations on an interval.

Setting up to be a consumer of PCIM is straight-forward and described here. The following code
demonstrates how to set up device-patient associations for your medical device in real-time and snapshot
modes.

Reporter

• Provides
patient
and/or device
association
data

Manager

• Validates, stores
and
communicates
data

Consumer

• Uses patient
and device
association
data

 2 innovisionmedical.com

 3 innovisionmedical.com

Initialization Phase

1. Create a DeviceProfile to represent your medical device in the device-patient association

 DeviceProfile profile {};
 profile.setEui64(EUI64Utils::createEUI64("11:22:33:44:55:66"));
 profile.setSendingApp("InnoVision Consumer");
 profile.setSendingFacility("InnoVision Facility");
 profile.setModel("Test Model");
 profile.setModelManufacturer("Test Manufacturer");
 profile.setSerialNumber("123456789");

2. Create the DevicePatientAssociationConsumer that will be used to interact with the PCIM manager.

The consumer takes the profile we created in step one as well as a host and port for the manager to
communicate with.

 DevicePatientAssociationConsumer dpac { profile, host, port };

Snapshot Mode:

1. The DevicePatientAssociationConsumer we created in the initialization phase can be used to query
the manager for associations. If a specific query is not specified, then it will create a query based on
the DeviceProfile we gave in the initialization phase.

std::vector<DevicePatientAssociation> initialAssociations = dpac.queryAssociations();

2. A specific query can be created and passed to the queryAssociations method on the
DevicePatientAssociationConsumer.

std::string valueToFilterBy = "PID-ID-123456";
DevicePatientAssociationFilter filter0 { FILTER_BY_PID_ID, valueToFilterBy,
FILTER_OPERATOR_EQ };

std::vector<DevicePatientAssociationFilter> filters = { filter0 };

DevicePatientAssociationQuery query { "QUERY_TAG_001", filters };

std::vector<DevicePatientAssociation> associations = dpac.queryAssociations(query);

The vector of associations contains all the association events that match the query. This includes both active
associations (associations without an end time). The DevicePatientAssociation class has a DeviceProfile to
represent the device part of the association and a Patient to represent the patient part of the association. It
also has the associate time and the disassociate time (if the latter is available).

 4 innovisionmedical.com

Real-Time Mode:

1. Real-Time mode requires a handler function (RealTimeAssociationHandler) to be defined as all
associations will be received asynchronously. This is an example handler function for incoming
associations. Its purpose is to log out the details of the association events it receives. The
associationsHandler takes a list of association events that include both associations and
disassociations. The isAssociated method reveals which type of event it is.

void
associationsHandler(const std::vector<DevicePatientAssociation>& associationsIn)
{
 for(const DevicePatientAssociation& a : associationsIn) {
 if(a.isAssociated()) {
 Logger::getLogger()->log("Device-Patient Association Received: " +

 a.getPatient().getPatientID().getMrn() + " -> " +
 a.getDeviceProfile().getEui64() + " at " +
 a.getAssociationTime().getDateTime());

 }
 else {
 Logger::getLogger()->log("Device-Patient Disassociation Received: " +

 a.getPatient().getPatientID().getMrn() + " -> " +
 a.getDeviceProfile().getEui64() + " at " +
 a.getDisassociateTime().getDateTime());

 }
 }
}

2. Real-Time mode is enabled by starting it on the DevicePatientAssociationConsumer. Starting real-
time mode requires an asynchronous association handler (RealTimeAssociationHandler). The
startRealTime method sends a Device-Patient Subscription query based on the DeviceProfile. A
custom DevicePatientAssociationQuery can also be used if desired.

 RealTimeAssociationHandler handler = &associationsHandler;

 isRunning = dpac.startRealTime(handler);

3. Real-Time mode can be disabled by calling the stop method on the
DevicePatientAssociationConsumer.

 dpac.stopRealTime();

